
Recursive Hierarchies: The Relational Taboo! 

Making their use possible in dimensional models. 

 

By Michael J. Kamfonas 

 

As I was going to St. Ives 

I met a man with seven wives. 

Every wife had seven sacks 

Every sack had seven cats 

Every cat had seven kits 

Kits, cats, sacks and wives, 

How many were going to St. Ives?  

Mother Goose 

All data warehouse and data mart designers eventually come across the dimension they wish they 

could represent as a recursive hierarchy. It may be that it has too many levels or uneven branches, or 

it may be dynamic with complex segmentation rules not known at design time.  The dilemma the 

designer faces is to force-fit the dimension into some fixed depth hierarchy, or to live with the 

performance implications of recursive SQL, such as the recursive union of DB2/UDB or Oracle’s 

“CONNECT BY”. Fortunately, there is another alternative. It exploits the concept of topological 

ordering and shifts most of the costly work to be done once in a preparatory step very similar to 

indexing. It is based on node enumeration applied at the time of data maintenance that enables 

transitive closure to be evaluated in a single SQL query. This technique particularly favors dimensions 

that are hierarchical, relatively stable in time, and are periodically maintained.  

A lot of interest has been expressed recently for solutions to the recursive hierarchy problem. This 

technique has been successfully used since the early 90s, often combined with versioning to represent 

slowly changing recursive hierarchies. This article focuses on the basic technique, and it is part of the 

Versioned Dimensional Model, a collection of techniques for dimensional store design. 

Since the  first publicationof this article at the Relational Journal in1992 the technique has appeared 

in various publication and in J. Celko’s book “SQL for Smarties” under the name “Nested Sets”. The 

principle has been implemented in real-life applications, such as the PeopleSoft suite since the mid-

90s.  
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Introduction 

Man has used hierarchical decomposition for thousands of years to classify objects and artifacts, to 

structure organizations, to plan activities, to describe physical and conceptual configurations, or to organize 

knowledge and events.  Such structures are inevitably manifested in dimensional information models as 

taxonomies of products, customer segmentations, organizational and location hierarchies, cost and account 

decompositions, component breakdowns, genealogy trees, program structures, to mention only a few.  For 

the purposes of this article, we will consider all such hierarchical (tree) dimensions that have the following 

characteristics: 

1. They are defined over some object class (nodes) participating in a binary relationship type (arcs) 

forming a tree graph; i.e. each node has at most one parent and potentially many children. Different 

branches of the tree may have different depth. Multiple roots can be viewed as children of a null parent, 

making a single tree with a null root. 

2. The binary relationship that defines the graph is a step relationship such as  “is parent of”,  

“immediately reports to” or “is part of”. Dimensions often have a classifying criterion (reporting, 

containment etc.), however explicit hierarchies are suited for arbitrary segmentation hierarchies such as 

those used to classify markets or customers, where the classification rules vary from branch to branch 

and level to level.  

3. A transitive relationship can be recursively defined by chaining these step relationships in sequence.  

The set of all such transitive relationships that can be generated is the transitive closure.  For example, 

we can define the ancestor as either being a parent, or an ancestor of a parent. This is the same as 

defining ancestors as parents, parents of parents, parents of parents of parents, and so on.  Similarly, we 

can define reports to as the relationship between any two organizations that are connected by a chain of 

directly reports to relationships. Finally, the includes/is used in relationship is similarly derived as a 

chain of part of relationships. 

From now on, instead of abstract constructs, we will use the organization and the reporting relationship 

to illustrate the design of recursive dimensions that can be efficiently queried for transitive closure. These 

queries can be used in isolation or as a dimension filter combined into a larger query. The Conclusion 

contains some additional thoughts on when to use recursive hierarchies and what to watch for.  

Our design will represent the organization as a hierarchical dimension with one (or more) top nodes, 

which decompose down to elementary ones, recursively via the relationship reports to.  The following 

relation identifies such an organizational entity: 

org(TID, PID, NAME, other properties...) 

TID is the “token ID” serving as the surrogate name of the organization dimension.   The PID is the 

“Parent ID”, denoting a reference to the parent organization.  Since this is a hierarchical structure, at most 

one parent per node is possible.  The highest level organizations will have no parent; i.e. the PID can be 

either NULL or the default value. For the purposes of our example, we will assume the use of numeric TIDs 

and PIDs and the use of NULL in the top node PIDs to denote “no parent”.  

A typical problem is to select all organizations directly or indirectly reporting to a given organization, 
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or to select all organizations to which a given one (or small list) directly or indirectly reports to.  This 

operation is particularly useful as a dimension filter if it can be combined with other dimension filters and 

joined to a fact in one SQL statement. The example in figure 1 shows the direct reporting relationships.  

Assume that we need to extract all expenses incurred by organizations under organization X.  Two obvious 

approaches to solving the problem are to traverse the structure, or to pre-store the transitive closure 

relationship in a table.  The traversing of the structure can be achieved either by SQL extensions, such as 

the “Connect By” clause in Oracle, or a recursive union of the DB2 family. This can also be done 

procedurally, by reading successive layers of children of the organizations within X, but procedures can not 

be used as part of larger SQL queries. 

The “prestored transitive closure” approach involves an intermediate table that stores all descendents of 

X, and a join to the org table. The intermediate table can be temporary, generated every time a query is 

issued, or permanent, always containing the transitive closure of the "reports to" relationship.  

Each of these solutions has its own disadvantages: The first one actually “walks the structure” requiring 

multiple requests to extract children sets for each node retrieved.  The advantage of this approach is that it 

does not introduce any update anomalies since no redundant data is maintained.  The second solution uses 

set processing, but it requires that a temporary table be first built (and indexed) or one must permanently 

maintain a very large redundant table and deal with the associated update anomalies.  A tree five layers 

deep with a fanout of 10 children per node has a total of 11,111 nodes, 11,110 parent-child relationships, 

but its transitive closure contains over 11,000,000 ancestor descendent relationships.  A single maintenance 

operation may affect over one million of these ancestor descendent relationships. The cost of this approach 

grows geometrically as the fanout and depth grows. The maintenance complications and lack of scalability 

make this option undesirable.  

Before discussing a better alternative, it is worth considering yet another interesting problem: “Given 

two organizations, verify that directly or indirectly one reports to the other”.  The structure traversal would 

require comparing all the descendents and ancestors of the first organization to the second.  A better 

approach would be to take the ancestor path to the top from each of the two nodes and verify if the other 

node is in it. The cost will then be less than 2h where h is the maximum depth of the organizational tree.  

Alternatively, it would require searching for the existence of the pair in the transitive closure set, if 

physically maintained. A generalization of this variant of dimension filtering selects nodes using both 

ancestor and descendent set qualification:  “select all departments that belong to these divisions and have 

offices at these locations” or “select all market segment/locations of college students with at least 50% state 

college participation”.  

 

Figure 1----A Tree Graph with S & S2 Numbers 
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The problem with these graph-selections is the impracticality of maintaining large redundant transitive 

closure tables, or the low performance of path traversal using recursive SQL extensions. Fortunately, there 



© Michael J. Kamfonas 4 kamfonas@earthlink.net 

is an alternative, that uses an old idea, topological ordering, to pre-enumerate the nodes at maintenance 

time, so that ancestor-descendent queries can be simple and fast.  

The LR Design Approach 

Observe the tree in figure 1.  Let the nodes represent org entities, and let arcs denote "immediately 

reports to” relations.  Notice the two numbers that lie on the left and right of each node. Can you see how 

they can be used to identify all ancestor-descendant relations?  Check how each node's numbers are between 

the left and right number of each of their ancestors.  In addition, a node's two numbers define the outside 

boundaries of all their descendants' numbers. 

Let's call these two numbers L and R for the left and right one respectively.  These attributes encode 

the hierarchical ordering of the organizational entity in the whole hierarchy in a way that can be used in set 

queries.  Here are the rules that govern their use: 

1. L and R share a common domain of ordered values.  This domain is chosen to be a binary integer. A 

given value of this domain can be used only once, either as an L or an R value but not as both an L and 

an R value. For a given node, the L value shall be strictly less than the R value 

2. L and R, although unique, they shall not be used for external identification of any entity, like we never 

use Row IDs to reference a row in a table. They can be arbitrarily reassigned to better facilitate 

efficient retrieval, in the same spirit that tables and indexes may be reorganized to facilitate efficient 

retrieval.   

3. Any two nodes satisfy the ancestor-descendent relationship exactly when the descendent's L (or R) 

value is between the ancestor's L and R values: 

j ofancestor  i <=> )R < L <(L ij i  

j ofancestor  i <=> )R < R <(L ij i  

  Simply, all L and R values of nodes hierarchically subordinate to a given node, are between its L and 

R range, and no node that is not hierarchically subordinate to it satisfies this property.  For example if l 

and r are the respective L and R values of some organization, then all organizations directly or 

indirectly reporting to it will have their L between l and r.  

The L and R numbers can be viewed as intervals. Each parent’s interval covers the sum of the intervals 

of all its children. These intervals define a topological ordering over the nodes. The assignment of L/R 

values is the result of numbering the nodes of a tree depth-first, traversing the nodes from left to right. 

During the enumeration process, each node is visited coming once from the top and a second and last time 

from below, after visiting all its descendents. At these two visits, the L and R attributes are set respectively, 

assigned next sequential values dispensed off a counter. Figure 1 shows this numbering sequence.  

Figure 2 shows two queries and a view.  Case 1 returns the ancestors, and case 2 returns the 

descendents of the node named QNAME.  Two references are made to the same table, ‘A’ being the 

correlation name for the “ancestor” role, and ‘D’ being the “descendent” role.  All queries use the same 

predicate to restrict the descendent nodes’ L values to fall in the (A.L..A.R) range.  
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Figure2----Tree Queries 

 

case 1:  Query of organization ancestors of QNAME (reporting chain up) 

 

select   A.NAME,   . . . 

from  ORG  A, ORG   D 

where  D.NAME = :QNAME and 

 D.L between A.L  and A.R 

  

 

Case2: Query returning set of all direct and indirect reports to node identified by :QNAME as of :QDATE: 

 

select   D.NAME,  . . . 

from  ORG  A, ORG   D 

where  A.NAME = :QNAME and 

 D.L  between A.L  and  A.R 

 

Case 3:  View returning ANAMEs of ancestors of :descendents DNAME as of :QDATE; 

 

create view  org_anc  (DNAME, ANAME, . . .) as 

select   D.NAME, A.NAME   . . . 

from  ORG   A, ORG   D 

where  D.L  between   A.L  and A.R 

 

Case 3 shows a view that relates descendents and ancestors. This view can be used either to return sets 

of ancestors by descendent given a set of descendents, or sets of descendents by ancestor given a set of 

ancestors. If we were to physically store this table, it would have the contents of the transitive closure table 

discussed in the Introduction. Instead of joining the transitive closure table, we will use the “between” 

predicate to do the filtering for us. Having faith in the optimizer, the DBMS will push selections through the 

view to develop a plan equivalent to case 1 or 2.  

An often-posed question is “Why don’t we use a hierarchical keyword to achieve the same result?” For 

example, an IP address like scheme could enumerate the levels like 1,1.1,1.2,1.3,1.1.1 etc. The problem 

with this scheme is that all qualifications need to start from the top. Otherwise, we will have to scan the 

whole index or table. With the L/R enumeration however, we can relate any node to any other and still 

employ index scans.  

Performance of the L/R Method  

Descendent seeking queries are the most efficient. Ancestor seeking ones can be reduced to half an 

index-only scan.  A combined index on L (descending), R (ascending) helps ancestor searches.  The 

between predicate for this type of search has an unusual form, restricting a constant between two columns.  

This situation will result in a matching lookup of the descendent’s L value on the combined index, and a 

scan to the end of the index.  The best we can achieve in this case is to use index only access.  The average 

cost of this query will be that of scanning half the index since every value in the domain of L is equally 

likely for the constant. 

For the more common descendent-seeking queries, the selected rows qualify whenever their L is 

between two constants, i.e. the L and R of the given ancestor. Such a query will consequently use a 

matching lookup, to locate the lower bound of the "between", and scan the index until the upper bound is 

reached.  These queries are very efficient, since all scanned index entries qualify.  
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The performance advantage of the L/R method over the SQL recursive union or Connect By clause is 

about a level of magnitude. This advantage is because most of the work is done up-front, and the 

topological ordering of the nodes is already accomplished and captured in the L/R interval indexing. Here 

are a few points on the L/R performance: 

1. To detect whether two nodes have an ancestor-descendent relationship normally requires the 

traversal of the path from one node to the other. Using the L/R numbers however, any two nodes 

can be tested by using a simple between clause without traversing the graph. 

2. Since the L/R method does not need to traverse the structure, other more selective predicates may 

filter down the qualifying rows before the ancestor-descendent qualification is applied. In recursive 

SQL, path traversal needs to happen upon unconstrained node sets, postponing highly filtering 

predicates until after the paths have been exhaustively traversed. 

3. L/R descendant selection subqueries scale well, even in MPP share-nothing environments. The 

simple ancestor-descendent range test is partitionable and can be combined with other partitionable 

filtering predicates; thus achieving distributed dimension qualification. Recursive SQL requires 

multiple directed invocations of the children-seeking query before applying other predicates. This 

approach pays for latency delay roughly proportional to the depth of the traversed tree, in addition 

to the implication discussed under item 2 above. 

Using L/R Dimensions in Star Joins  

Let’s see how the subqueries we discussed over isolated dimensions can be integrated into fact joins 

with multiple dimensions.  We will have to extend the example with a fact table, say one that captures 

financial data: cost(ORG, TYPE, PERIOD, AMT). It references lowest level nodes of the organizational 

hierarchy, a type hierarchy and a time period hierarchy, and captures the period amount as a metric. For 

every period, organization and type, a fact is recorded. The schema for our little example is described at the 

top of figure 3. Next are the definitions of ORG_TC and TYPE_TC views that capture the transitive closure 

as described earlier for the organization (ORG) and cost type (TYPE) dimensions respectively. These views 

contain the attributes for each ancestor and each descendent pair, prefixed with A and D respectively.  



Michael J. Kamfonas 7 kamfonas@earthlink.net 

Figure 3 ----Dimensions in Context 

 

Schema: 

org   TID, PID, NAME, L, R, LEVEL  . . . 

type TID, PID, NAME, L, R, CLASS, POSTING? 

period  WK_END_DT, MONTH, YEAR 

cost ORG, TYPE, PERIOD, AMT 

 

Transitive Closure Views: 

create view  org_tc  (DTID,DNAME, ATID,ANAME, . . .) as 

select   D.TID,D.NAME, A.TID, A.NAME   . . . 

from  ORG   A, ORG   D 

where  D.L  between   A.L  and A.R 

 

create view  type_tc  (DTID,DNAME, ATID,ANAME, ...) as 

select   D.TID,D.NAME, A.TID, A.NAME   . . . 

from  TYPE  A, TYPE   D 

where  D.L  between   A.L  and A.R 

 

Query using Views: 

select   O.ANAME, T.ANAME,P.MONTH,sum(AMT) 

from  ORG_TC  O, TYPE_TC T, PERIOD P, COST C 

where  P.WK_END_DT between  1/1/1998 and 8/1/1998 

 and O.ALEVEL = ‘DEPT’  

 and T.DCLASS = ‘LABOR’  

 and  T.ALEVEL = ‘S’ 

 and P.WK_END_DT = C.PERIOD 

 and T.TID = C.TYPE 

 and O.TID = C.ORG 

group by O.ANAME, T.ANAME, P.MONTH 

order by 3,1,2 

 

Query using nested SQL: 

With  

ORG_TC  as (select  distinct D.TID, A.NAME 

from  ORG   A, ORG   D 

where  D.L  between   A.L  and A.R 

and A.LEVEL = ‘DEPT’ ), 

TYPE_TC as (select distinct D.TID,A.NAME 

from  TYPE  A, TYPE   D 

where  D.L  between   A.L  and A.R 

     and D.CLASS = ‘LABOR’  

    and  A.LEVEL = ‘S’) 

select   O.NAME, T.NAME,P.MONTH,sum(AMT) 

from  ORG_TC  O, TYPE_TC T, PERIOD P, COST C 

where  P.WK_END_DT between  1/1/1998 and 8/1/1998 

   and P.WK_END_DT = C.PERIOD 

   and T.TID = C.TYPE 

   and O.TID = C.ORG 

group by O. NAME, T. NAME, P.MONTH 

order by 3,1,2 
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Let’s assume that we are seeking all labor charges grouped by month, at the summary cost type level 

(TYPE.LEVEL = ‘S’) and department level of the organization. Two forms of the query are shown. The 

first one uses the transitive closure views, while the second exploits nested SQL and the “WITH” clause of 

the SQL3 proposal. The first implementation would be appropriate for any DBMS with an optimizer that 

will avoid unnecessary view materialization, such as Oracle. The second form is currently supported by the 

DB2 family, and with slight modification, it can be implemented using temporary intermediate tables in 

Sybase.  

Of course, a straightforward implementation without views or nested SQL is also possible, however it 

will expose two uses of ORG and of TYPE tables to the user or tool that has to write the query.  The nested 

SQL suffers from the same problem, but because of the modularity allowed by the in-line views (WITH 

clause); it is easier to compose by advanced users, or by tools using template-driven engines. 

A complication that may arise is that dimension selections contain no duplicates during the join to the 

fact table. One can often guarantee this from the selection criteria alone. In cases, however, where lists of 

ancestors are provided, it may be that some are descendents of others, and we may end up selecting the 

same descendent multiple times. The nested SQL example of figure 3 uses the DISTINCT keyword in 

dimension subselects to gurantee the elimination of duplicates. Regular queries can also achieve the same 

result by pushing the selection in EXISTS or IN clauses.  

Generating L and R numbers 

We saw how the L/R numbers can be used for efficient ancestor-descendant queries.  However, how 

should these values be maintained?  It can be done incrementally, as the table is updated, or in batch.  

Figure 4 describes a simple algorithm that assigns these  numbers.   It uses the parent-child relationship to 

walk the hierarchy from the root(s) depth-first, left-to-right, and assigns values to L and  R  using a simple 

counter.  In order to allow for efficient maintenance operations,  a constant SKIP-VALUE is added prior to 

assigning the R value.  This has an effect similar to that of PERCENT_FREE in an index.  On-line 

maintenance activities use the range of unused L values to attach or reallocate children.  After a while these 

ranges are filled, and a batch reassignment has an effect similar to that of index reorganization.  By allowing  

neither L nor R to be used for externally  referencing objects, this reassignment remains independent to 

object identification and referencing.  To carry the indexing  similarity a step further,  think how by not 

using addresses to reference objects  in an R-DBMS index, maintenance remains orthogonal to object 

identification.  

 The algorithm starts by reading all nodes that have no parent, and storing them in an array.  The last 

array element  is  assigned the L value  from an incremented counter, and then all its children are appended 

to the array.  The last element is again selected and processed similarly,  and this is repeated until some 

element is found that has no children.  The array now contains concatenated consecutive children sets along 

one  path of nodes defined by the lexicographically highest keys of each level. 
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Figure 4---- L & R Generation Algorithm 

 

accept  constant SKIP;  

let  A:  array of {  TID:  primary key of org, 

   L:   integer = 0, 

   R: integer = 0} 

 indexed by  i = 0; 

initialize   integer: Counter = 0 ; 

 

 load root nodes using 

 select  TID, 0, 0 

 from   ORG 

 where  PID is NULL ; 

 load  each  into  A after incrementing i by 1 

 

--  i is left pointing to the last element loaded 

 

while  i > 0 do    -- process last node of array until empty: 

if  A[i].L  =  0  

 set A[i].L :=  ++ Counter; 

 append children of A[i].TID to A using 

  select    TID, 0. 0 

  from    ORG 

  where  PID =  A[i].TID 

  load each  into A after incrementing i by 1 

 

 -- i  is left pointing to last element loaded  

else 

 set A[i].R := (Counter := Counter + SKIP); 

 update  ORG[TIDi]   using 

  update  ORG  

  set   L   = A[i].L 

   R = A[i].R 

  where  TID = A[i].TID 

 decrement  i  by  1 

endif 

repeat; 

 

Then the R number of the last childless element is assigned, after incrementing the counter by the 

constant SKIP value, and finally its L and R-values are updated in the database.  Processing then continues 

with the next item on the left in the array.  If that item has not been assigned an L value, it is a member of 

the same child-set, and follows the same processing, that is, its children are appended to the right and 

processing continues with the last element. If on the other hand the item already has an L value assigned, it 

means that all its children have been processed and stored. The next counter value is assigned to its R, and 

the node is written to the database before proceeding with the next node on the left.   

Each time the while loop is entered, the following applies: 

1. All ancestors of any node  on the array are  somewhere between the beginning of the array and that 

node.  

2. If a node on the array has been assigned an L number, all its ancestors have been assigned smaller L 

values.   
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3. If A[i] has an L number assigned, it has no children, or its children have been updated with L values 

higher than A[i].L  and lower than or equal to the Counter value. Also, all its ancestors have been 

assigned smaller L values, and  none of them has been assigned an R value 

The process  eventually unwinds until no nodes are left on the array unprocessed.  The array size 

needed is equal to the maximum combined size of all children sets along any one path from any top to any 

leaf node.   

The algorithm uses the array as a stack to process the tree in layers.  Each node is read once and 

updated once, consequently the cost of the algorithm is of the order of the number of nodes in the tree.  

A way to improve the performance of this algorithm is to reduce the cost of attempting to access the 

children of leaf nodes.  This can be  achieved by marking all nodes that are leaves up-front, using  two  set  

update operations that assign the appropriate value to the LL  (Lowest Level) indicator: 

Update ORG set LL = Y; 

Update ORG  set LL = N where ORG.TID not used as a PID 

The cost of this enhancement is two table scans and can only be justified if the number  of leaf nodes is 

significantly larger than the non-leaf ones. In a tree such as the example discussed in the introduction, this 

would amount to executing the second set update for only 1,111 nodes, and in exchange avoid 10,000 

attempts to get children of leaf nodes.   

A word of caution: This algorithm assumes that the PID references do not form cyclic paths. If the 

purity of the tree can be guaranteed from the process that inserts/updates the table and the PID value, the 

algorithm shown will be adequate. Otherwise an “occurs check” needs to be added to insure that every time 

a new layer of children is read into the array A, none of these children also appears in their respective 

ancestor path.  

Conclusion 

The technique described in this article is not a general substitute for fixed level dimensions or 

hierarchies. Fixed depth dimensions are simpler to implement, maintain and query. However, there are 

cases where forcing a dimension to a fixed uniform number of levels causes more problems than it solves. 

Hierarchies that have variable depth or an uncertain number of levels or hierarchies defined after the 

warehouse is deployed, or stratifications that are based on complex rules can often benefit if implemented 

as recursive hierarchies.  

Remember that recursive hierarchies are desirable for their flexibility, they are less of a performance 

concern, but they introduce some degree of complexity. Make sure that your front-end tools will generate 

the proper SQL and that you have worked out a way to maintain them. Validate performance expectations 

with your specific DBMS and optimizer using realistic size dimension and fact tables.  

Recursive hierarchies can also implement slowly changing recursive dimensions using versioning. The 

result is a very powerful, general dimension archetype. The hierarchical behavior and the versioning 

behavior can be captured as independent design patterns and can be superimposed. The versioning 

approach was presented in the DBP&D article on “Snapshot Integrity” in the September 1998 issue. 


