
Recursive Hierarchies: The Relational Taboo!

Making their use possible in dimensional models.

By Michael J. Kamfonas

As I was going to St. Ives

I met a man with seven wives.

Every wife had seven sacks

Every sack had seven cats

Every cat had seven kits

Kits, cats, sacks and wives,

How many were going to St. Ives?

Mother Goose

All data warehouse and data mart designers eventually come across the dimension they wish they

could represent as a recursive hierarchy. It may be that it has too many levels or uneven branches, or

it may be dynamic with complex segmentation rules not known at design time. The dilemma the

designer faces is to force-fit the dimension into some fixed depth hierarchy, or to live with the

performance implications of recursive SQL, such as the recursive union of DB2/UDB or Oracle’s

“CONNECT BY”. Fortunately, there is another alternative. It exploits the concept of topological

ordering and shifts most of the costly work to be done once in a preparatory step very similar to

indexing. It is based on node enumeration applied at the time of data maintenance that enables

transitive closure to be evaluated in a single SQL query. This technique particularly favors dimensions

that are hierarchical, relatively stable in time, and are periodically maintained.

A lot of interest has been expressed recently for solutions to the recursive hierarchy problem. This

technique has been successfully used since the early 90s, often combined with versioning to represent

slowly changing recursive hierarchies. This article focuses on the basic technique, and it is part of the

Versioned Dimensional Model, a collection of techniques for dimensional store design.

Since the first publicationof this article at the Relational Journal in1992 the technique has appeared

in various publication and in J. Celko’s book “SQL for Smarties” under the name “Nested Sets”. The

principle has been implemented in real-life applications, such as the PeopleSoft suite since the mid-

90s.

© Michael J. Kamfonas 2 kamfonas@earthlink.net

Introduction

Man has used hierarchical decomposition for thousands of years to classify objects and artifacts, to

structure organizations, to plan activities, to describe physical and conceptual configurations, or to organize

knowledge and events. Such structures are inevitably manifested in dimensional information models as

taxonomies of products, customer segmentations, organizational and location hierarchies, cost and account

decompositions, component breakdowns, genealogy trees, program structures, to mention only a few. For

the purposes of this article, we will consider all such hierarchical (tree) dimensions that have the following

characteristics:

1. They are defined over some object class (nodes) participating in a binary relationship type (arcs)

forming a tree graph; i.e. each node has at most one parent and potentially many children. Different

branches of the tree may have different depth. Multiple roots can be viewed as children of a null parent,

making a single tree with a null root.

2. The binary relationship that defines the graph is a step relationship such as “is parent of”,

“immediately reports to” or “is part of”. Dimensions often have a classifying criterion (reporting,

containment etc.), however explicit hierarchies are suited for arbitrary segmentation hierarchies such as

those used to classify markets or customers, where the classification rules vary from branch to branch

and level to level.

3. A transitive relationship can be recursively defined by chaining these step relationships in sequence.

The set of all such transitive relationships that can be generated is the transitive closure. For example,

we can define the ancestor as either being a parent, or an ancestor of a parent. This is the same as

defining ancestors as parents, parents of parents, parents of parents of parents, and so on. Similarly, we

can define reports to as the relationship between any two organizations that are connected by a chain of

directly reports to relationships. Finally, the includes/is used in relationship is similarly derived as a

chain of part of relationships.

From now on, instead of abstract constructs, we will use the organization and the reporting relationship

to illustrate the design of recursive dimensions that can be efficiently queried for transitive closure. These

queries can be used in isolation or as a dimension filter combined into a larger query. The Conclusion

contains some additional thoughts on when to use recursive hierarchies and what to watch for.

Our design will represent the organization as a hierarchical dimension with one (or more) top nodes,

which decompose down to elementary ones, recursively via the relationship reports to. The following

relation identifies such an organizational entity:

org(TID, PID, NAME, other properties...)

TID is the “token ID” serving as the surrogate name of the organization dimension. The PID is the

“Parent ID”, denoting a reference to the parent organization. Since this is a hierarchical structure, at most

one parent per node is possible. The highest level organizations will have no parent; i.e. the PID can be

either NULL or the default value. For the purposes of our example, we will assume the use of numeric TIDs

and PIDs and the use of NULL in the top node PIDs to denote “no parent”.

A typical problem is to select all organizations directly or indirectly reporting to a given organization,

Michael Kamfonas is an independent consultant and specializes in relational decision support and

data management systems. His “Versioned Dimensional Model” (VDM) is a collection of

dimensional design techniques such as the one presented here developed over the past 15 years. He

welcomes comments at kamfonas@earthlink.net or through the editor

mailto:kamfonas@earthlink.net

Michael J. Kamfonas 3 kamfonas@earthlink.net

or to select all organizations to which a given one (or small list) directly or indirectly reports to. This

operation is particularly useful as a dimension filter if it can be combined with other dimension filters and

joined to a fact in one SQL statement. The example in figure 1 shows the direct reporting relationships.

Assume that we need to extract all expenses incurred by organizations under organization X. Two obvious

approaches to solving the problem are to traverse the structure, or to pre-store the transitive closure

relationship in a table. The traversing of the structure can be achieved either by SQL extensions, such as

the “Connect By” clause in Oracle, or a recursive union of the DB2 family. This can also be done

procedurally, by reading successive layers of children of the organizations within X, but procedures can not

be used as part of larger SQL queries.

The “prestored transitive closure” approach involves an intermediate table that stores all descendents of

X, and a join to the org table. The intermediate table can be temporary, generated every time a query is

issued, or permanent, always containing the transitive closure of the "reports to" relationship.

Each of these solutions has its own disadvantages: The first one actually “walks the structure” requiring

multiple requests to extract children sets for each node retrieved. The advantage of this approach is that it

does not introduce any update anomalies since no redundant data is maintained. The second solution uses

set processing, but it requires that a temporary table be first built (and indexed) or one must permanently

maintain a very large redundant table and deal with the associated update anomalies. A tree five layers

deep with a fanout of 10 children per node has a total of 11,111 nodes, 11,110 parent-child relationships,

but its transitive closure contains over 11,000,000 ancestor descendent relationships. A single maintenance

operation may affect over one million of these ancestor descendent relationships. The cost of this approach

grows geometrically as the fanout and depth grows. The maintenance complications and lack of scalability

make this option undesirable.

Before discussing a better alternative, it is worth considering yet another interesting problem: “Given

two organizations, verify that directly or indirectly one reports to the other”. The structure traversal would

require comparing all the descendents and ancestors of the first organization to the second. A better

approach would be to take the ancestor path to the top from each of the two nodes and verify if the other

node is in it. The cost will then be less than 2h where h is the maximum depth of the organizational tree.

Alternatively, it would require searching for the existence of the pair in the transitive closure set, if

physically maintained. A generalization of this variant of dimension filtering selects nodes using both

ancestor and descendent set qualification: “select all departments that belong to these divisions and have

offices at these locations” or “select all market segment/locations of college students with at least 50% state

college participation”.

Figure 1----A Tree Graph with S & S2 Numbers

A

B C

D E F G H

I J K

1

2

3 4 5 6 7 8

9 10

11

12 13 14 15 16 17

18 19 20

21

22

The problem with these graph-selections is the impracticality of maintaining large redundant transitive

closure tables, or the low performance of path traversal using recursive SQL extensions. Fortunately, there

© Michael J. Kamfonas 4 kamfonas@earthlink.net

is an alternative, that uses an old idea, topological ordering, to pre-enumerate the nodes at maintenance

time, so that ancestor-descendent queries can be simple and fast.

The LR Design Approach

Observe the tree in figure 1. Let the nodes represent org entities, and let arcs denote "immediately

reports to” relations. Notice the two numbers that lie on the left and right of each node. Can you see how

they can be used to identify all ancestor-descendant relations? Check how each node's numbers are between

the left and right number of each of their ancestors. In addition, a node's two numbers define the outside

boundaries of all their descendants' numbers.

Let's call these two numbers L and R for the left and right one respectively. These attributes encode

the hierarchical ordering of the organizational entity in the whole hierarchy in a way that can be used in set

queries. Here are the rules that govern their use:

1. L and R share a common domain of ordered values. This domain is chosen to be a binary integer. A

given value of this domain can be used only once, either as an L or an R value but not as both an L and

an R value. For a given node, the L value shall be strictly less than the R value

2. L and R, although unique, they shall not be used for external identification of any entity, like we never

use Row IDs to reference a row in a table. They can be arbitrarily reassigned to better facilitate

efficient retrieval, in the same spirit that tables and indexes may be reorganized to facilitate efficient

retrieval.

3. Any two nodes satisfy the ancestor-descendent relationship exactly when the descendent's L (or R)

value is between the ancestor's L and R values:

j ofancestor i <=>)R < L <(L ij i

j ofancestor i <=>)R < R <(L ij i

 Simply, all L and R values of nodes hierarchically subordinate to a given node, are between its L and

R range, and no node that is not hierarchically subordinate to it satisfies this property. For example if l

and r are the respective L and R values of some organization, then all organizations directly or

indirectly reporting to it will have their L between l and r.

The L and R numbers can be viewed as intervals. Each parent’s interval covers the sum of the intervals

of all its children. These intervals define a topological ordering over the nodes. The assignment of L/R

values is the result of numbering the nodes of a tree depth-first, traversing the nodes from left to right.

During the enumeration process, each node is visited coming once from the top and a second and last time

from below, after visiting all its descendents. At these two visits, the L and R attributes are set respectively,

assigned next sequential values dispensed off a counter. Figure 1 shows this numbering sequence.

Figure 2 shows two queries and a view. Case 1 returns the ancestors, and case 2 returns the

descendents of the node named QNAME. Two references are made to the same table, ‘A’ being the

correlation name for the “ancestor” role, and ‘D’ being the “descendent” role. All queries use the same

predicate to restrict the descendent nodes’ L values to fall in the (A.L..A.R) range.

Michael J. Kamfonas 5 kamfonas@earthlink.net

Figure2----Tree Queries

case 1: Query of organization ancestors of QNAME (reporting chain up)

select A.NAME, . . .

from ORG A, ORG D

where D.NAME = :QNAME and

 D.L between A.L and A.R

Case2: Query returning set of all direct and indirect reports to node identified by :QNAME as of :QDATE:

select D.NAME, . . .

from ORG A, ORG D

where A.NAME = :QNAME and

 D.L between A.L and A.R

Case 3: View returning ANAMEs of ancestors of :descendents DNAME as of :QDATE;

create view org_anc (DNAME, ANAME, . . .) as

select D.NAME, A.NAME . . .

from ORG A, ORG D

where D.L between A.L and A.R

Case 3 shows a view that relates descendents and ancestors. This view can be used either to return sets

of ancestors by descendent given a set of descendents, or sets of descendents by ancestor given a set of

ancestors. If we were to physically store this table, it would have the contents of the transitive closure table

discussed in the Introduction. Instead of joining the transitive closure table, we will use the “between”

predicate to do the filtering for us. Having faith in the optimizer, the DBMS will push selections through the

view to develop a plan equivalent to case 1 or 2.

An often-posed question is “Why don’t we use a hierarchical keyword to achieve the same result?” For

example, an IP address like scheme could enumerate the levels like 1,1.1,1.2,1.3,1.1.1 etc. The problem

with this scheme is that all qualifications need to start from the top. Otherwise, we will have to scan the

whole index or table. With the L/R enumeration however, we can relate any node to any other and still

employ index scans.

Performance of the L/R Method

Descendent seeking queries are the most efficient. Ancestor seeking ones can be reduced to half an

index-only scan. A combined index on L (descending), R (ascending) helps ancestor searches. The

between predicate for this type of search has an unusual form, restricting a constant between two columns.

This situation will result in a matching lookup of the descendent’s L value on the combined index, and a

scan to the end of the index. The best we can achieve in this case is to use index only access. The average

cost of this query will be that of scanning half the index since every value in the domain of L is equally

likely for the constant.

For the more common descendent-seeking queries, the selected rows qualify whenever their L is

between two constants, i.e. the L and R of the given ancestor. Such a query will consequently use a

matching lookup, to locate the lower bound of the "between", and scan the index until the upper bound is

reached. These queries are very efficient, since all scanned index entries qualify.

© Michael J. Kamfonas 6 kamfonas@earthlink.net

The performance advantage of the L/R method over the SQL recursive union or Connect By clause is

about a level of magnitude. This advantage is because most of the work is done up-front, and the

topological ordering of the nodes is already accomplished and captured in the L/R interval indexing. Here

are a few points on the L/R performance:

1. To detect whether two nodes have an ancestor-descendent relationship normally requires the

traversal of the path from one node to the other. Using the L/R numbers however, any two nodes

can be tested by using a simple between clause without traversing the graph.

2. Since the L/R method does not need to traverse the structure, other more selective predicates may

filter down the qualifying rows before the ancestor-descendent qualification is applied. In recursive

SQL, path traversal needs to happen upon unconstrained node sets, postponing highly filtering

predicates until after the paths have been exhaustively traversed.

3. L/R descendant selection subqueries scale well, even in MPP share-nothing environments. The

simple ancestor-descendent range test is partitionable and can be combined with other partitionable

filtering predicates; thus achieving distributed dimension qualification. Recursive SQL requires

multiple directed invocations of the children-seeking query before applying other predicates. This

approach pays for latency delay roughly proportional to the depth of the traversed tree, in addition

to the implication discussed under item 2 above.

Using L/R Dimensions in Star Joins

Let’s see how the subqueries we discussed over isolated dimensions can be integrated into fact joins

with multiple dimensions. We will have to extend the example with a fact table, say one that captures

financial data: cost(ORG, TYPE, PERIOD, AMT). It references lowest level nodes of the organizational

hierarchy, a type hierarchy and a time period hierarchy, and captures the period amount as a metric. For

every period, organization and type, a fact is recorded. The schema for our little example is described at the

top of figure 3. Next are the definitions of ORG_TC and TYPE_TC views that capture the transitive closure

as described earlier for the organization (ORG) and cost type (TYPE) dimensions respectively. These views

contain the attributes for each ancestor and each descendent pair, prefixed with A and D respectively.

Michael J. Kamfonas 7 kamfonas@earthlink.net

Figure 3 ----Dimensions in Context

Schema:

org TID, PID, NAME, L, R, LEVEL . . .

type TID, PID, NAME, L, R, CLASS, POSTING?

period WK_END_DT, MONTH, YEAR

cost ORG, TYPE, PERIOD, AMT

Transitive Closure Views:

create view org_tc (DTID,DNAME, ATID,ANAME, . . .) as

select D.TID,D.NAME, A.TID, A.NAME . . .

from ORG A, ORG D

where D.L between A.L and A.R

create view type_tc (DTID,DNAME, ATID,ANAME, ...) as

select D.TID,D.NAME, A.TID, A.NAME . . .

from TYPE A, TYPE D

where D.L between A.L and A.R

Query using Views:

select O.ANAME, T.ANAME,P.MONTH,sum(AMT)

from ORG_TC O, TYPE_TC T, PERIOD P, COST C

where P.WK_END_DT between 1/1/1998 and 8/1/1998

 and O.ALEVEL = ‘DEPT’

 and T.DCLASS = ‘LABOR’

 and T.ALEVEL = ‘S’

 and P.WK_END_DT = C.PERIOD

 and T.TID = C.TYPE

 and O.TID = C.ORG

group by O.ANAME, T.ANAME, P.MONTH

order by 3,1,2

Query using nested SQL:

With

ORG_TC as (select distinct D.TID, A.NAME

from ORG A, ORG D

where D.L between A.L and A.R

and A.LEVEL = ‘DEPT’),

TYPE_TC as (select distinct D.TID,A.NAME

from TYPE A, TYPE D

where D.L between A.L and A.R

 and D.CLASS = ‘LABOR’

 and A.LEVEL = ‘S’)

select O.NAME, T.NAME,P.MONTH,sum(AMT)

from ORG_TC O, TYPE_TC T, PERIOD P, COST C

where P.WK_END_DT between 1/1/1998 and 8/1/1998

 and P.WK_END_DT = C.PERIOD

 and T.TID = C.TYPE

 and O.TID = C.ORG

group by O. NAME, T. NAME, P.MONTH

order by 3,1,2

© Michael J. Kamfonas 8 kamfonas@earthlink.net

Let’s assume that we are seeking all labor charges grouped by month, at the summary cost type level

(TYPE.LEVEL = ‘S’) and department level of the organization. Two forms of the query are shown. The

first one uses the transitive closure views, while the second exploits nested SQL and the “WITH” clause of

the SQL3 proposal. The first implementation would be appropriate for any DBMS with an optimizer that

will avoid unnecessary view materialization, such as Oracle. The second form is currently supported by the

DB2 family, and with slight modification, it can be implemented using temporary intermediate tables in

Sybase.

Of course, a straightforward implementation without views or nested SQL is also possible, however it

will expose two uses of ORG and of TYPE tables to the user or tool that has to write the query. The nested

SQL suffers from the same problem, but because of the modularity allowed by the in-line views (WITH

clause); it is easier to compose by advanced users, or by tools using template-driven engines.

A complication that may arise is that dimension selections contain no duplicates during the join to the

fact table. One can often guarantee this from the selection criteria alone. In cases, however, where lists of

ancestors are provided, it may be that some are descendents of others, and we may end up selecting the

same descendent multiple times. The nested SQL example of figure 3 uses the DISTINCT keyword in

dimension subselects to gurantee the elimination of duplicates. Regular queries can also achieve the same

result by pushing the selection in EXISTS or IN clauses.

Generating L and R numbers

We saw how the L/R numbers can be used for efficient ancestor-descendant queries. However, how

should these values be maintained? It can be done incrementally, as the table is updated, or in batch.

Figure 4 describes a simple algorithm that assigns these numbers. It uses the parent-child relationship to

walk the hierarchy from the root(s) depth-first, left-to-right, and assigns values to L and R using a simple

counter. In order to allow for efficient maintenance operations, a constant SKIP-VALUE is added prior to

assigning the R value. This has an effect similar to that of PERCENT_FREE in an index. On-line

maintenance activities use the range of unused L values to attach or reallocate children. After a while these

ranges are filled, and a batch reassignment has an effect similar to that of index reorganization. By allowing

neither L nor R to be used for externally referencing objects, this reassignment remains independent to

object identification and referencing. To carry the indexing similarity a step further, think how by not

using addresses to reference objects in an R-DBMS index, maintenance remains orthogonal to object

identification.

 The algorithm starts by reading all nodes that have no parent, and storing them in an array. The last

array element is assigned the L value from an incremented counter, and then all its children are appended

to the array. The last element is again selected and processed similarly, and this is repeated until some

element is found that has no children. The array now contains concatenated consecutive children sets along

one path of nodes defined by the lexicographically highest keys of each level.

Michael J. Kamfonas 9 kamfonas@earthlink.net

Figure 4---- L & R Generation Algorithm

accept constant SKIP;

let A: array of { TID: primary key of org,

 L: integer = 0,

 R: integer = 0}

 indexed by i = 0;

initialize integer: Counter = 0 ;

 load root nodes using

 select TID, 0, 0

 from ORG

 where PID is NULL ;

 load each into A after incrementing i by 1

-- i is left pointing to the last element loaded

while i > 0 do -- process last node of array until empty:

if A[i].L = 0

 set A[i].L := ++ Counter;

 append children of A[i].TID to A using

 select TID, 0. 0

 from ORG

 where PID = A[i].TID

 load each into A after incrementing i by 1

 -- i is left pointing to last element loaded

else

 set A[i].R := (Counter := Counter + SKIP);

 update ORG[TIDi] using

 update ORG

 set L = A[i].L

 R = A[i].R

 where TID = A[i].TID

 decrement i by 1

endif

repeat;

Then the R number of the last childless element is assigned, after incrementing the counter by the

constant SKIP value, and finally its L and R-values are updated in the database. Processing then continues

with the next item on the left in the array. If that item has not been assigned an L value, it is a member of

the same child-set, and follows the same processing, that is, its children are appended to the right and

processing continues with the last element. If on the other hand the item already has an L value assigned, it

means that all its children have been processed and stored. The next counter value is assigned to its R, and

the node is written to the database before proceeding with the next node on the left.

Each time the while loop is entered, the following applies:

1. All ancestors of any node on the array are somewhere between the beginning of the array and that

node.

2. If a node on the array has been assigned an L number, all its ancestors have been assigned smaller L

values.

© Michael J. Kamfonas 10 kamfonas@earthlink.net

3. If A[i] has an L number assigned, it has no children, or its children have been updated with L values

higher than A[i].L and lower than or equal to the Counter value. Also, all its ancestors have been

assigned smaller L values, and none of them has been assigned an R value

The process eventually unwinds until no nodes are left on the array unprocessed. The array size

needed is equal to the maximum combined size of all children sets along any one path from any top to any

leaf node.

The algorithm uses the array as a stack to process the tree in layers. Each node is read once and

updated once, consequently the cost of the algorithm is of the order of the number of nodes in the tree.

A way to improve the performance of this algorithm is to reduce the cost of attempting to access the

children of leaf nodes. This can be achieved by marking all nodes that are leaves up-front, using two set

update operations that assign the appropriate value to the LL (Lowest Level) indicator:

Update ORG set LL = Y;

Update ORG set LL = N where ORG.TID not used as a PID

The cost of this enhancement is two table scans and can only be justified if the number of leaf nodes is

significantly larger than the non-leaf ones. In a tree such as the example discussed in the introduction, this

would amount to executing the second set update for only 1,111 nodes, and in exchange avoid 10,000

attempts to get children of leaf nodes.

A word of caution: This algorithm assumes that the PID references do not form cyclic paths. If the

purity of the tree can be guaranteed from the process that inserts/updates the table and the PID value, the

algorithm shown will be adequate. Otherwise an “occurs check” needs to be added to insure that every time

a new layer of children is read into the array A, none of these children also appears in their respective

ancestor path.

Conclusion

The technique described in this article is not a general substitute for fixed level dimensions or

hierarchies. Fixed depth dimensions are simpler to implement, maintain and query. However, there are

cases where forcing a dimension to a fixed uniform number of levels causes more problems than it solves.

Hierarchies that have variable depth or an uncertain number of levels or hierarchies defined after the

warehouse is deployed, or stratifications that are based on complex rules can often benefit if implemented

as recursive hierarchies.

Remember that recursive hierarchies are desirable for their flexibility, they are less of a performance

concern, but they introduce some degree of complexity. Make sure that your front-end tools will generate

the proper SQL and that you have worked out a way to maintain them. Validate performance expectations

with your specific DBMS and optimizer using realistic size dimension and fact tables.

Recursive hierarchies can also implement slowly changing recursive dimensions using versioning. The

result is a very powerful, general dimension archetype. The hierarchical behavior and the versioning

behavior can be captured as independent design patterns and can be superimposed. The versioning

approach was presented in the DBP&D article on “Snapshot Integrity” in the September 1998 issue.

